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SUMMARY 

A new computational method is presented for reducing numerical diffusion in environmental fluid problems. 
This method, which is referred to as the Semi-Implicit Skew Upwind Method (SISUM), is a robust solution 
procedure for the conditional convergence of the discretized transport equations. The method retains the 
advantage of the low numerical diffusion of the conventional skew upwind schemes but does not suffer from 
over- or under-shooting often found in these methods due to the improved interpolation schemes. The 
effectiveness of SISUM is demonstrated in several examples. The comparison of the results of a hybrid 
scheme and SISUM with field observations of convection-dominated pollutant transport in strongly 
curvilinear river flow shows that SISUM successfully eliminates the high numerical diffusion produced by 
the hybrid scheme. The robustness of the method was tested by solving the hydrodynamics of a circular 
clarifier model with a large density gravity source term in the vertical-momentum equation. 
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INTRODUCTION 

The numerical solution of convection-dominated transport equations is plagued with several 
problems including instability, unrealistic oscillations and numerical diffusions. Success in over- 
coming the instability problem was first achieved through the use of upwind and hybrid 
schemes.' These schemes are still popular because of their robust nature but, the hybrid scheme 
suffers from severe numerical diffusion when the flow direction is not parallel to the local grid 
direction. For the case of a square grid, deVahl Davis and Mallinson' indicated that the 
numerical diffusion of a first-order upwind scheme is maximum when cz = 45" (ct =angle between 
velocity vector and co-ordinate axes). 

Since Raithby3 introduced the Skew Upwind Scheme (SUDS) to reduce the numerical diffu- 
sion, several SUDSs have been Although the SUDSs have been shown to minimize 
numerical diffusion, they have not been widely applied to solve environmental hydraulic prob- 
lems such as elliptic river models. One reason for this is the complexity of the SUDSs compared to 
the hybrid scheme. However, the major difficulties in using conventional SUDSs in cases of 
low-level real diffusion are, the lack of a robust (stable) solution procedure and the occurrence of 
an anomaly in the form of over- or under-shooting. The value of the diagonal coefficient in skew 
methods is not always greater than (or equal to) the summation of the absolute values of the 
off-diagonal coefficients, due to the presence of the negative off-diagonal coefficients; conse- 
quently an unconditional convergency does not exist for the iterative solution of matrix equa- 
tions. An absolutely stable iterative solution for a set of equations cannot be assured for all initial 
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assumptions, unless there is diagonal dominance." Unfortunately, in some cases it is the smaller 
diagonal coefficients compared to the hybrid or the positive coefficient SUDSs that enable the 
conventional SUDSs to estimate more precisely the values of the convection flux on the 
Control-Volume (CV) faces. 

In recent studies, the instabilities and over- or under-shooting problems have been improved 
by the following methods: 

(1) The flux blending technique was proposed by Sturgess and Syed* and Peric et a l l 0  This 
method calculates the convective flux as a weighted sum of the flux expressions from the 
first-order upwind and SUDSs. By lowering the weighting factor, the convected flux is 
calculated with more weight on the pure upwind scheme and therefore results in a positive 
increase in the coefficients and greater computational stability, but at the cost of more 
numerical diffusion.13 

(2) The mass flow-weighted SUDS was first presented by Hassan et aL4 and then Schneider 
and Raw.7 This scheme guarantees positive equation coefficients but retains some, although 
significantly reduced, numerical diffusion.' 

(3) The Non-linear Filtering Algorithm (FRAM) was presented by Sheu et al." In this method, 
the high-order discretization of convection terms is the same as the conventional SUDS 
which allows negative coefficients to exist. The damping of numerical oscillations by the 
FRAM is achieved by selectively adding a strong local dissipation flux (numerical diffusion) 
to equations at the nodes where strong numerical oscillations appear. Sheu et al." found 
that as the FRAM procedure is turned on, all the oscillations disappear but a dissipative 
error is added. 

An alternative approach to achieving high-accuracy solutions is the QUICK method of 
Leonard.14 The major differences between the QUICK and skew schemes are: (1) The QUICK 
principle distinguishes upstream nodes from downstream nodes based on the direction of the 
velocity component (u or v )  at the face of CV, while the skew upwinding principle defines the 
upstream nodes along the direction of a streamline through a face of the CV; (2 )  the QUICK 
schemes use high-order accuracy interpolations in the defined upwind directions to obtain the 
face values (e.g. SMART,15 ULTRA-QUICK/5th/7th'6), while the skew methods have used 
linear interpolation. The application of the recent QUICK family with high-order accurate 
convection approximations 5,16 has successfully eliminated over- or under-shooting. 

In this paper, a Semi-Implicit Skew Upwind Method (SISUM) is developed which yields 
positive coefficients in the coefficient matrix along with computational robustness without 
introducing extra-numerical diffusion or excessively large source terms involving the convection 
flux. Comparing the SISUM with all the skew upwinding methods cited in this paper, the major 
novel features of this method are: 

(1) an extra iterative process which is designed to eliminate the numerical diffusion step by step 
while preventing the amplification of any deviations between the initial field and the final 
solution for the cases of non-dominant diagonal coefficients; 

(2) improved convection flux expressions for the face values of the CV that do not yield over- 
or under-shooting. 

INTEGRATING EQUATIONS OF THE SEMI-IMPLICIT SKEW UPWIND METHOD 
(SISUM) 

The general two-dimensional water depth-averaged form of the convective-diffusion equation of 
a quantity cp in a body of water is 



SEMI-IMPLICIT SKEW UPWIND METHOD 805 

O N N W  

in which u is the velocity component in the x-direction,.v is the velocity component in the 
y-direction, Y, is the eddy viscosity, S ,  is the source term, h is the local water depth and 0, is the 
Schmidt number. 

The dependent variables are discretized on the non-uniform staggered mesh as shown in 
Figure J .3 The integration of equation (1) over the CV (Figure 1) yields17 

K fN N I 

- (diffus. terms) dVol + 
- JVOi 

where u, and u, are the velocity components in the x-direction at the control-volume surface 
points e and w, respectively, and u, and v,  are the velocity components in the y-direction at the 
surface points n and s, respectively. 

The SISUM chooses implicit expressions for the convection flux for the influent surfaces of the 
CV and semi-implicit expressions for the effluent surfaces. The term semi-implicit refers to the fact 
that the effluent fluxes involve the old values of 'pp. In SISUM, the effluent convection flux terms 
are placed on the left-hand side of the equation to distinguish them from the influent terms which 
appear on the right-hand side. Four possible skew flows are considered, i.e. NE, NW, SE and SW 
(Figure 1). 

In the SW case (u, 20 ,  u, 2 0, u, 2 0  and us 2 0), the CV faces w and s are the convection flux 
inlet faces while faces e and n are the outlet faces. The conservation equation including the 
convected flux through the CV is obtained from equation ( 2 )  as 

( P ~ F ~ + ( P , F ~ = ( P ~ F , + ~ ~ F , +  (diffus. terms+S,-acp/at)dVol. (3) s,,, 
Similarly, for the SE case (u, SO, u, I 0, u, 2 0 and u, 20),  equation ( 2 )  becomes 

c 

VwFw+VnFn=VeFe+Vo,Fs+ J (diffus. terms +S,-dq/dt)dVol. 
Vol 

6 X e  
I I I I I 1 

ossd 

(4) 

Figure 1 .  Control volume with 17 surrounding nodal points 
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For the NW and NE cases (u, 2 0, u, 2 0, v ,  I 0  and us I 0, and u, 5 0, u, I 0, u, I 0 and us I 0, 
respectively), one obtains 

cpeF,+cpsF,=cpwF,+cpnF,+ (diffus. terms +S,-dcp/dt)dVol ( 5 )  s,,, 
Lo, 

and 

cp, F ,  + cp, F ,  = qe F ,  + q s F ,  + (diffus. terms + S, - dcp/dt) dVol , (6) 

where the flows of the convection flux F,, F,, Fe and F ,  on the four CV faces are 

F e =  I ue (he dyp; (7) 

F ,  = 1 0 ,  Ih, dxp; F,=l  v,I h, dxp. (8) 

Fw = I u w  I hw dyp 
and 

A few cell-flow anomalies, such as cell trifurcation flow with three inlet or outlet faces, cell 
stagnation flow and cell counter-flow, may occur in the computation domain. For these rare 
cases, the cell flow regime loses its strong and unique directional feature. An average velocity 
vector direction at the centre of the cell was used in SISUM instead of the individual vector 
directions at the faces to overcome this local anomaly. In the small sub-domain associated with 
these cell anomalies, this approximation can still give reasonable accuracy since diffusion 
processes are usually dominant over convection. 

The following derivation focuses on the SW case including the diffusion as well as transient and 
source terms. Similar discretization procedures can easily be extended for the other three cases. 

Using second-order central differencing to discretize the diffusion terms in equation (3) gives 

(PeFe + VnFn + D p c p ~ = ~ w F w  + ~ s F s  +DeV, + D w ~ w  + D ~ V S  + DnV, + (Sq + cp,”/At) hpdxpdyp (9) 
where the lower case subscripts are for the face values, the upper case subscripts are for the values 
at  grid nodes, and cp; is the value of cpp from the previous time step. The diffusion fluxes D,, D,, De 
and D ,  on the four CV faces and the coefficient D ,  are given as 

D ,  = D ,  + D ,  + D ,  + D ,  +dx,dy,hp/At. (12) 

The closure-conservation equation (9) requires estimates of the convection fluxes of cp across 
the CV faces; this means that the values cpe ,  cp,, cp, and cps are determined from the surrounding 
nodal values such as cpp, cpw, cpsw and c p s ,  as shown in Figure 2. The upwinding along the 
streamline direction is chosen to relate the nodal variables to the CV face points. 

CONVECTION EXPRESSIONS OF CONVENTIONAL SUDS 

For a steady pure convection problem, equation (1) can be re-written in the local streamwise 
direction, s, as 

P V s ( ~ r p / d s ) = O  (13) 
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Figure 2. Illustration of interpolation method of SISUM: (a) velocity angles at four faces of the control volume; (b) critical 
angles of SISUM 

where 

V , = ( U ~ + U ~ ) ~ ’ ~ ;  ds= (14) 

Considering the inlet surface point w as an example, the general form of equation (1 3) can be 
given as 

(15) 
a40 (cpw-%) . 

p V - & p V  = 0 ;  c p w = 4 0 u ,  as L 

for the flow direction shown in Figure 2(a). The subscript u on cp means ‘upwind’ and L is the path 
length. 
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For the SW case the estimates of the convection flux used in the conventional SUDS3*" at 
faces s and w give 

4Ds=Af c p s w + ~ ~ ~ 0 - ~ ~ ~ 4 D w ~ ~ , ~ P , ~ ;  cPs=AscpSw+(1.0--A,)cPs(as2BS), (16) 

qw= A ,  ~psw + (1.0 - A , ) ~ W ( M . ~  SPw); ~ p w  = A k ~ s w  + ( l . O - A k ) c P s ( a w  > Pw),  (17) 
where A ,  (along the line W-SW), A, (along the line S-SW), A; (along the line S-SW) and 
A,' (along the line W-SW) are linear interpolation factors, ctW is the angle between the velocity 
vector at point w and line w-P, a, is the angle between the velocity vector at point s and the CV 
face s as shown in Figure 2(a), and Bw and j?, are shown in Figure 2(b). The remaining faces are 
treated in a similar manner. This scheme can result in up to 30% over- or under-shooting even 
when the negative coefficients are reduced by cutting off the skew scheme at the corner point in 
Raithby's original procedure (see Appendix I). 

CONVECTION EXPRESSIONS OF SISUM 

Outlet faces 

Figure 2(b) shows the three possible zones where the velocity vector can fall. These are defined 
as the inner zone, the intermediate zone and the outer zone. In order to eliminate under- or 
over-shooting, the strategy of SISUM for the two outlet expressions is to use: (a) single node skew 
upwinding for outer zone (cutting off the scheme at the corner point), (b) two node skew 
upwinding for intermediate angles and (c) mixed nodal and face point skew upwinding for the 
inner zone. The angles a, B and y shown in Figures 2(a) and 2(b) are all measured in the 
counter-clockwise direction from the horizontal grid. 

The SISUM estimates of the convected flux through the two outlet faces are 

q n  =A:' ~ p w  +(1.0-A;') (PP 

(Pn = A n  CPW + (1.0- &)4DP 

(an 2 7,) > 

(Bn I a n  < Y n )  9 

and 

where a, is the angle between the velocity vector at point e and line e-P, an is the angle between 
the velocity vector at point n and the control-volume face n (Figure 2(a)), Be, B,,, ye  and yn are the 
critical angles as shown in Figure 2(b), and A ,  (along the line P-S), A," (along the line P-s), An 
and A,!,' are linear interpolation factors. 

Inlet faces for nine-point SISUM 

For the two inlet expressions, (a) single node skew upwinding is used for the outer zone and 
(b) two node skew upwinding is used for the intermediate and inner zones (Figure 2(b)). The 
estimates of the convection flux through the two inlet faces are given by 

c P w = A w c p s w + ( 1 . ~ - A w ) c p w  (a, I B w ) ;  c p w = c p s w  ( a w > P w )  (20) 
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and 

where a, is the angle between the velocity vector at point w and the line w-W; a, is the angle 
between the velocity vector at point s and the control-volume face s, BW and Bs are the critical 
angles as shown in Figure 2(b), and A ,  and A,  are linear interpolation factors. 

This version of SISUM is a partially conservative scheme (SISUM-9) and although it is simple 
to apply and effective in reducing over- and under-shooting, it has the disadvantage of being 
partially non-conservative when the velocity vector is in the inner zone (e.g. ct, <ye) .  This can be 
seen from the expression for the flux leaving Control Volume P (CVP) through the face e, which is 
different from the expression for the flux entering CVE through the same face. However, if the 
same expression was used for inlet faces as was used for the outlet faces, the final discretization 
equations could directly involve 17 grid nodes. For an implicit or semi-implicit skew upwind 
scheme, the computer code would be extremely difficult since all the face expressions, being 
dependent on the variable local velocity directions, would yield a huge number of possible 
combinations of different nodes. 

Inlet faces for seventeen-point SISUM 

The non-conservative error in SISUM-9 is produced by the difference between two values on 
the same face given by expressions with different interpolation accuracies (e.g. when a, <ye);  
consequently, this error can be significantly reduced by reduction of the grid size, and it will be 
less important in problems with low gradients. To overcome this partially non-conservative 
problem without unduly complicating the code, two semi-implicit expressions for the inlet faces 
w and s are introduced: 

and 

c p s  = Ascpsw +(1.0 - 4) cps+ ECCT, 

cps = A,  cpsw + (1.0 - 4) 4% ( B s  I a, < 7 s )  7 

Vs = cpsw (a, < P S I  3 (23) 

(24) 

(as 2 Y s )  9 

where ECCT, is the 'Explicit Conservative Compensation Term at face w' 
P ECCTw=cpL-w(cps~, ( P W ) - ( P ~ ~ - ~ ( ( P S W ,  CPW) 

where cpb",,-, is the face value leaving Control Volume W (CVW) through the face w, cprn-, is the 
face value entering CVP through the same face, and cpsw is the face value entering CVW through 
the face sW, as shown in Figure 1.  Similarly, ECCT, is the 'Explicit Conservative Compensation 
Term at face s', i.e. 

where cp",,, - s  is the face value leaving CVS through the face s, cpFn-, is the face value entering CVP 
through the same face, and cpws is the face value entering control volume S through the face wS, as 
shown in Figure 1. The final four sets of convection-flux expressions will implicitly involve nine 

ECCTs=~tut-s(c~ws, ~ s ) - ~ L s ( c ~ s w ,  CPS) 3 (25)  
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centre nodes and explicitly involve another eight nodes around the nine centre nodes due to the 
four possible skew directions (see Figure 1). Equations (18), (19), (22) and (23) give a fully 
conservative SISUM (SISUM-17). The code of SISUM-17 computes any residuals between the 
inlet-face values of the current CV (given by equations (20) and (21)) and the outlet face values 
corresponding to the two upwind CVs. These residuals, which are much smaller than the 
convection term itself, are added to the source term of the final discretization equation of 
SISUM-17. 

FINAL DISCRETIZATION EQUATION OF SISUM 

The influent convection flux expressions (Equations (20) and (21) or (22) and (23)) can be 
introduced directly into the right-hand side of equation (9) to replace the surface values cp, and cps 
without producing negative off-coefficients. However, when the effluent convection flux expres- 
sions (equations (18) and (19)) are directly used to replace the values cp, and cp, on the left-hand 
side of equation (9), then negative convection terms from the left-hand side of the equation (such 
as cps and cpw) may give a final coefficient matrix with negative values (see Appendix I). The 
reduced diagonal coefficient resulting from the negative off-diagonal coefficients may lead to 
instability; this problem is different from the over- or under-shooting generated by the convection 
approximation.’ 

This problem is solved by using a unique property of node P which is evident when the two 
oulet faces of the CV are distinguished from the two inlet faces. Node P is always an upwind point 
to the two outlet faces regardless of the flow direction. The distance from node P to the outlet 
faces is the shortest in comparison to the distances from other upwind nodes. Based on this 
property, the effluent values of cp, and cp, are assumed to be proportional to the centre-nodal 
value cpp given as 

where C e  and C, are two unknown proportionality coefficients which depend on the distribution 
of cp on the respective effluent faces. Substitution of expressions (equation (26)) for the effluent 
convection terms in equation (9) leads to 

r P e = C e V P ;  (Pn=Cn(PP, (26) 

( C e F e  +CnFn+Dp)cpp=Fwf(cpw, qsw)+Fsf(cp~? cpsw)+FwECCT,+F,ECCTs+Decp~ 

+ D w  CPW + D s c ~ s +  DnV, + (Sq + d /At )hpdxpd~p  3 (27) 
where ECCT, and ECCT, are zero for SISUM-9. The terms of F,f(cpw, qSw) and Fsf(cps, cpsw) 
represent four different combinations of the branches in equations (22) and, (23) for the SW case; 
they are not source terms. In the computer code, equation (27) is replaced by four individual 
expressions corresponding to: (1) a, I PW, us IP , ;  (2) ct, <PW, M, 2 P S ;  (3) ct, 2 P,, a, I jS; (4) a, 2 pw; 
as 2 P s .  

To estimate the effluent distribution coefficients C, and C,, we start with the assumption of 
uniform distribution of cp on the two effluent surfaces, i.e. C,=C,=l, which means that the 
quantity cp is well mixed in the CV. The assumption that cpe=cpn=cpP for the effluent surfaces 
corresponds to the first-order upwind scheme. This initial approximation is referred to as 
a ‘Mixed skew upwind scheme’ which possesses the property of unconditional convergency; 
however, it still retains some numerical diffusion due to the assumption of uniform distribution 
on the two effluent surfaces. The accurate expressions of the ‘non-uniform effluent distribution 
coefficients’ are 
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in which cp, and cp, through the two outlet faces are given by equations (18) and (19), and the 
superscript * on cpp is for the old value at each iterative step. The final discretization equation for 
SISUM-9/17 is 

+D,cp~+DWcpW+D,(PS+D,cpN+ (S,+cppOlAt)hPdX,dY,. (29) 

1 cp" 
--Fe + - F n  + ~p 'PP = Fwf(cpw, ~ s w )  + Fsf(vs7 CPSW) + F ~ E C C T ~  + F ~ E C C T ~  

cpp* 

When the iterations converge, i.e. as (pp approaches qp*, equation (29) satisfies the original 
equation (9) and gives the solution with the lowest level of numerical diffusion. When the cpp* tends 
to zero, the analytical values of equation (28) will tend to be infinite; a zero solution for cp, of 
equation (29) will be obtained by the iterative solution process which is absolutely robust due to 
the highly dominant diagonal coefficient. In practice, a very small value should be added 
to cpp* in the computer code to avoid dividing by zero. 

The algorithm (equation (29)) has the property that an over-estimate of cp, yields the stabilizing 
downward compensation from C ,  + C ,  > 2 at each iteration, while an under-estimate of cpp gives 
an upward compensation since C, + C, < 2. In contrast with the conventional SUDS which starts 
by solving a conditionally convergent equation for an arbitrary given initial field, the SISUM 
allows some numerical diffusion to exist at the beginning of the iteration to obtain an uncondi- 
tionally convergent equation. The remaining numerical diffusion is gradually minimized as the 
estimated non-uniform distribution coefficients C ,  and C, approach their true values, which may 
be less than one. This method delays the solution of the final conditionally stable equation (in 
which the summation of the local C ,  and C, may decrease to the minimum value) until the initial 
field is sufficiently close to the final solution to prevent divergence. 

APPLICATIONS OF THE SEMI-IMPLICIT SKEW UPWIND METHOD (SISUM) 

Pure convection of an oblique step 

Numerical diffusion can be studied by setting the real diffusion to zero 
in a transport problem that has an analytical solution. For a pure convection problem, an 
imposed concentration discontinuity should persist in the streamwise direction. The simulation of 
the pure convection of an oblique concentration discontinuity has been discussed by Patankar' 
and has been used as a test case by R a i t h b ~ , ~  Ramadhyani and Patankar,5 Raw,6 Gaskell and 
Lau,15 Leonard and MokhtariI6 and Sheu et al." 

The results of the SISUM-9/17 are compared with those of Raw using the same square and 
uniform 11 x 11 grid. A uniform velocity is imposed at an angle tl to the horizontal grid; the 
discontinuity step, cp= 1 to cp=O, passes through the centre of the computational mesh, as shown 
in Figure 3(a). Figures 3(a)-3(c) show the results of the hybrid, mixed skew upwind and 
SISUM-17 for the case of a=45", which is the worst situation for the hybrid scheme. Figure 3(b) 
shows the initial field of SISUM-17 which was obtained by assuming C, = C ,  = 1.0 (mixed skew 
upwind). The iterative convergence rate, at the central point of the computation domain (exact 
solution cp = 1.0), is shown in Figure 4. The result indicates that after 20 iterative steps SISUM-17 
practically eliminates the imposed numerical diffusion in the initial field. The final result 
accurately reproduces the discontinuous cp profile and is the same as that of the conventional 
skew upwind scheme.6 SISUM-9 gives the same result as SISUM-17 since both schemes are the 
same for c( = 45". By contrast, the results predicted by positive coefficient skew upwind methods 
and conventional SUDS with FRAM" (Grid 50 x 50) show that some numerical diffusion 

Comparative testing. 
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(a) Prediction by Hybrid scheme 

Figure 3. Transport of an oblique concentration discontinuity in a uniform velocity region for a =45" ( Y ,  =O.O) and grid 
11 x 11: (a) prediction by hybrid scheme; (b) prediction by mixed skew upwind scheme; and (c) prediction by SISUM-9/17 
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Figure 4. Iterative convergence of SISUM-17 at the central point of the calculation domain 

remained for this case. Also, the results of SISUM-9/17 are better than those given by standard 
QUICK and SMART" (grid 21 x 21) when a=45". 

Figures 5(at5(c) show the results of the hybrid, SISUM-9 and SISUM-17, respectively, for the 
case of c(=31". For this case, the convection approximation of SISUM-17 is different from the 
SISUM-9 due to a,<y, (inner zone). SISUM-17 shows almost no numerical diffusion in the result 
while SISUM-9 shows some numerical diffusion due to the partially non-conservative nature of 
this scheme and the very coarse grid. Both SISUM schemes give much better results than the 
hybrid. Furthermore, neither SISUM-9 nor SISUM-17 generated any under- or over-shooting. 

In order to compare the results of SISUM-9/17 with Raw's results, the case of yc=8.0 
(a= -31") was considered where the boundary value of cp between boundary conditions cp= 1 
and cp=O was set to 0 5 . 3 , 5 * 6  Figure 6 compares the profiles predicted by the regular SUDS,6 the 
positive coefficient skew upwind (the mass flow-weighted skew upwind scheme),6 SISUM-9 and 
SISUM-17 with the exact solution at a central vertical plane. The solutions of SISUM-9 display 
lower smearing than the positive coefficient skew upwind method. At grid points 0,1,2,3 and 7,8, 
9, 10, SISUM-9 gives solutions that are better or the same as the conventional SUDS, but the 
conventional SUDS suffers from an over- and under-shoot of about 5%-10% for an 11 x 11 grid6 
and about 15%-25% for a 50 x 50 grid." At grid points 4 and 6, the solutions of conventional 
SUDS seem to have lower numerical diffusion than SISUM-9; however, the conventional results 
at these two points may not be the true solutions of the original discretization equation due to 
unrealistic compensations from the over- or under-shooting at points 3 and 7. Again, SISUM-17 
shows a promising result even for this very coarse grid. 

Computational eflciency. Because of the significant additional operation-count per grid-point, 
the cost of SISUM-9/17 per grid-point for each iteration is 1.4-1.6 times that of the hybrid 
scheme. However, on comparing the result given by SISUM (number of nodes, N = 11 x 11) with 
that given by hybrid scheme ( N =  50 x 50) for the case presented in Figure 3(c) (c(=45"), it was 
found that the result of SISUM is still much better than that of the hybrid scheme despite the 
N used in the hybrid scheme being 20 times that used by SISUM." For each iteration, the 
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(a) Prediction by Hybrid scheme 

(b) Prediction by SISUM-9 

Figure 5. Transport of an oblique concentration discontinuity in a uniform velocity region for a = 31" ( Yc=2.0) and grid 
11 x I t :  (a) prediction by hybrid scheme; (b) prediction by SISUM-9; and (c) prediction by SISUM-17 
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Figure 6. Transport of an oblique concentration discontinuity in a uniform velocity region for a= -31" (Y,=8.0) and 
grid 11 x 11 

relative CPU time required for N = 50 x 50 is 20 (if TDMA is used) or 400 (Gaussian algorithm) 
times that required for N =  11 x 11. Furthermore, for a practical problem with recirculations and 
diffusion, the iterative steps required to achieve convergence for either the hybrid scheme or 
SISUM are typically proportional to N 2 .  Since the explicit skew upwind method has a large 
convection source term, its time step must be very small. For a given level of numerical diffusion, 
the computational efficiency of SISUM is higher than either the explicit skew upwind method or 
the hybrid scheme. The fully implicit SUDS could result in a higher computational efficiency than 
SISUM, but instability problems may be encountered due to non-dominant diagonal coefficients. 

Pollutant spreading in the Detroit River 

SISUM-9/17 is applied to the simulation of pollutant transport in the Detroit River to 
illustrate its effectiveness in solving an environmental problem. 

Governing equations. The two-dimensional depth-averaged unsteady model, adopted here, 
consists of two elliptic momentum equations along with the continuity equation for the primitive 
hydrodynamic variables and an elliptic conservation equation for the contaminant mass. The 
turbulent transport terms that appear in these equations are determined with the aid of the k--E 
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model.” The standard parameters in the k--E model can be used for large or small rivers with 
acceptable accuracy. The mixing length theory could have been used but this would require 
calibration for each river problem. The mathematical model is the same as that of RodiI9 except 
that SISUM-9/17 replaces the hybrid scheme for solving the elliptic equations. The pressure can 
be solved as a general 2D problem by using the SIMPLE method17 and the ‘rigid-lid’ assumption. 
The pressure difference is converted to the deviation of the surface elevation by the hydrostatic 
assumption. The pressure solution process is faster than directly solving an unsteady water 
depth-average continuity equation. 

Calculation domain and boundary conditions. The hydraulics of the Detroit River was treated in 
two steps: (a) both Detroit and Fleming Channels were computed by a relatively coarse grid 
including Belle Isle and Peach Island (see Figure 7); (b) a refined grid is applied to simulate the 
Fleming Channel, The coarse grid yielded the upstream inlet boundary condition C-C (see 
Figure 8) for the Fleming Channel. 

The reach of the Fleming Channel simulated in the second step extended from Lake St.Clair to 
11 070 m downstream. The width of the calculation domain was 3307 m; a 67 x 47 non-uniform 
grid was used. The length for each CV in the lateral direction of the river was in the range 
67.5-135 m while in the longitudinal direction the range was 9&270 m. 

Based on the field data in the Detroit River,” the total discharge was 6230 m3 s-’, the inflow 
Q1 to the Detroit Channel was 3993 m3s-’, and the inflow Qz to the Fleming Channel was 
2237 m3 s-’. The field velocity data at the inflow boundary were adjusted to obtain the inflow 
boundary condition. 

The inflow concentration profile varied from 100 units at the Windsor river bank to 20 units at 
405 m offshore. 

SISUM-9 was used for boundary CVs while either SISUM-9 or SISUM-17 can be used for the 
internal CVs. Additional ‘IF’ statements are required in the code to consider the differences 
between the boundary CVs and internal CVs due to the staggered grid. The cases considered are: 
(1) one face of the boundary CV has a solid wall, and for this case the face point has the same 
position as the boundary node and critical angle /? should be equal to y when equations (18) to 
(21) are used; (2) the solid wall is treated as an inlet or outlet face with zero convection flux; (3) the 
hybrid scheme is used for the cases of two or three solid walls at boundary faces. 

Hydrodynamics. Figure 8 shows the predicted flow pattern in the Fleming Channel for the 
refined grid using SISUM-9. Two major recirculation zones and a still water zone were predicted. 
The first recirculation zone at the point A1 is caused by the main stream separating from the bank 
due to local shoreline curvature. The second eddy occurs near the Belle Isle side (Point A2); the 
strength of the eddy is relatively weak due to the shallow local water depth (08-1.5 m). 
Figure 9 compares the velocity profiles predicted by SISUM-9 and hybrid with the field data of 
the U.S. Army Corps of Engineers” at section A2-A2’ (see Figure 8). Both the model and field 
data give main-stream velocities, which are fairly uniform, in the range 0 . 7 4 9  ms-l .  The 
strength and size of the recirculation zone and the associated lateral velocity gradients simulated 
by SISUM-9 are greater than those predicted by the hybrid scheme due to the lower numerical 
diffusion of SISUM-9. 

Pollutant distribution. The aerial photograph shown in Figure 7 was taken by the Canadian Air 
Photo Service in 1976 just after a storm on Lake St. Clair. The turbidity plume was caused by the 
resuspension of fine sediment in the near-shore region along the transition from the lake to the 
Fleming Channel of the Detroit River. A significant feature of the turbidity plume is its slow rate 
of transverse mixing. 
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-0.2 0 0.2 0.4 0.6 0.8 1 
Velocity in the flow direction 

+ SISUM-9 -A- HYBRID + FIELD DATA 

Figure 9. Velocity profiles at section A2-A2' 

Figures lO(atlO(d) present the pollutant contour plots from the hybrid, mixed skew upwind 
method, SISUM-9 and SISUM-17, respectively, based on the velocity fields predicted by hybrid 
and SISUM-9. The width of the pollutant belt is assumed to be demarked by the 7% (isoconcen- 
tration line (referenced to the inlet concentration). Figure 1qb) shows the results of the mixed 
skew upwind method (effluent distribution coefficients = 1.0) which is used as the initial field of 
SISUM-9/17. Comparing this result with the results in Figures 1O(c) and 10(d) indicates the ability 
of the SISUM-9/17 to iteratively decrease the numerical diffusion to the lowest level. 

At the upstream end of the reach, the lateral widths of the pollutant belt predicted by the hybrid 
scheme and SISUM-9/17 are similar, i.e. 40%-50% of the channel width as shown in Figures 
lO(a), lO(c) and 10(d); however, the deviation between the belt widths rapidly increases as the flow 
direction deviates from the grid co-ordinate direction. At the down stream end of the reach, both 
field observations (Figure 7) and SISUM-9/17 gave belt widths in the range of 50%-60% of the 
channel width, while the hybrid scheme predicted a belt width occupying the whole channel. The 
major reason for the smearing error is the extreme numerical diffusion in the hybrid method when 
the streamlines are oblique to the co-ordinate directions in convection-dominated flow. The 
shape of the pollutant belts sim'ulated by SISUM-9 and SISUM-17 in the whole channel is much 
closer to the observed turbidity plume (Figure 7) than that predicted by the hybrid scheme. 

Comparing the 7% and 52% iso-concentration lines predicted by SISUM-17 (Figure lO(d)) 
with those given by SISUM-9 (Figure 1O(c)) indicates that SISUM-17 produces the sharper 
concentration gradients and the lower numerical diffusion. However, the deviations between 
SISUM-9 and SISUM-17 are significantly smaller than those in the case of pure convection due 
to the refined grid and the realistic gradients. 
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Figure 10. Predicted concentration contour plots by hybrid scheme, mixed skew upwind and SISUM-9/ 17: (a) prediction 
by hybrid scheme; (b) prediction by mixed skew upwind (c) prediction by SISUM-9; and (d) prediction by SISUM-17 

Density flows 

The final test case is used to check the robustness of SISUM-9 in a problem with a very high 
stability requirement. The numerical solution of density flow in clarifiers may encounter strong 
local instabilities;21 this is due to the extremely low hydraulic loading and very strong density 
variations which appear in the vertical momentum equation as a large source term.22 The 
mathematical model of the clarifier contains a hydrodynamic submodel, a transport submodel, 
a solids settling velocity equation, an equation of state that relates density and concentration and 
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Influent Tank skirt ; A  Effluent 

; A  Bottom sludge withdraw 

Influent Tank skirt ! A  Effluent 

(b) ! A  Bottom sludge withdraw 

Figure 11 Predicted flow pattern in a circular clanfier by SISUM-9 (a) neutral density, and (b) concentration of inlet 
solids=2500 mgl-’ 

a turbulence k-e model. The details of the model have been described by DeVantier and Larock’l 
and Zhou and McCorquodale.” 

The simulation considers a prototype circular secondary clarifier with tank radius = 21.0 m, 
skirt radius = 5.0 m, water depth in the clarifier H = 5.4 m and height of baffle H ,  = 2.75 m. The 
total hydraulic loading Qo + Qr = 3000 m3 h-  ’ with a Return Activated Sludge (RAS) ratio = 0.5 
(RAS = Qr/Qo). Two cases are considered: (a) neutral density; (b) a density flow with inlet solids 
concentration Co=2500 mg L-’. Figures 1 l(a) and l l(b) show the flow patterns simulated by 
SISUM-9 for both cases. Figure 12 shows the velocity profiles predicted by SISUM-9 and the 
hybrid scheme at Section A-A. SISUM-9 is better than the hybrid in reproducing the sharp 
vertical-velocity gradients for the neutral-density case. The velocity fields of SISUM-9 and the 
hybrid scheme are almost identical for density flow; this result can be explained by the fact that 
the density-gravity term in the vertical-momentum equation is an order of magnitude greater 
than the convection terms. 

For the density-flow problem, SISUM-9 required 40 time steps (At= 180 s) each consisting of 
40 iterations for the pressure and numerical-diffusion corrections to achieve computational 
convergence and a steady-state solution. SISUM-9 iterations are carried out simultaneously with 
the pressure corrections (SIMPLE,”). Both SISUM-9 and the hybrid scheme required about the 
same total number of iterations to reach a steady-state solution for the same convergence criteria 
(B,/Qo < 0.005; B, = summation of the absolute source values for each control volume). The 
robustness of the method points to the possibility that the skew upwind methods can replace the 
hybrid scheme in the solution of complex practical engineering problems. 
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Figure 12. Predicted velocity profiles at section A-A 

CONCLUSION 

The diagonal coefficients in skew upwind schemes are not always dominant and therefore, in the 
mathematical sense, convergence is not guaranteed; however, physically a realistic solution does 
exist. The SISUM presents a robust solution procedure for the skew upwind approach. An initial 
stable solution, based on the mixed skew upwind method with some numerical diffusion, is 
subsequently relaxed within SISUM until the numerical diffusion is minimized. 

The test problems presented here demonstrate that the proposed method has comparable or 
higher accuracy than the conventional skew upwind schemes with negative coefficients and is 
reasonably free from numerical instability and over- or under-shooting. The effectiveness of the 
method was illustrated by the solution of a pollutant transport in the Detroit River. The SISUM, 
when applied to density flow in clarifiers, was found to be as robust as the hybrid scheme. 
Comparison of the performance of SISUM with the hybrid scheme in three cases indicates that 
the SISUM and the conventional SUDS are particularly useful when the convection is primarily 
responsible for determining the distribution of the variables in curvilinear flow. 
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APPENDIX I 

A test case with over-shooting for SUDS 

Figure 13 presents a case with u, = u, = u, = us = 2.0, u, = u, = u, = us= 1.0, Ax = Ay = 1.0 and 
a= 26.6" (the angle between velocity vector and horizontal grid). The disadvantage of using the 
conventional SUDS to estimate convection face values can be shown by a simple numerical 
testing for this case. For a pure convection problem, equation (9) can be simplified to give 

2 ~ e  + Vn=2Vw + ~ s .  (30) 



822 S .  ZHOU, J. A. McCORQUODALE AND ZHONG JI 
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+ CASE-2 Nonuniform 
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Figure 13. Two interpolation examples for SUDS and SISUM 

Conventional SUDS gives the four face values, respectively, as 

qw=O~75qw+O~25cpsw (influent w), (31) 

cps = cpsw (influent s) , (32) 

(Pn=qw (effluent n) , (33) 

qe =0.75qp + 0-25qs (effluent e) . (34) 

The solution, qp= 1.333, shows more than 30% over-shooting in this case. Once the two outlet 
faces of the control volume are distinguished from the two inlet faces, it is found that one of the 
outlet surface value expressions, i.e. cpe  = 0 . 7 5 ~ ~  + O.25qs, causes the over-shooting in this case. 
The improved equations (18H21) used in SISUM give 

qe = 0.5qp + 0.5q0, . (35) 

The solution, qp= 1.0, gives no over- or under-shooting. In this case, the value of the effluent qe 
must be 1.0 to maintain mass balance for the same CV regardless for either SISUM or SUDS (see 
equation (30)). The SISUM gives qp=2.0 (1.0-0.5qs), which shows that the value of qp is related 
to the influent value of qs (face s). However, the SUDS gives cpp= 1.333 (1.0-025qs), which shows 
that the value of pp is related to the lateral node value qs. 

A test case with a non-dominate diagonal coejicient 

As shown in Figure 13 for a pure convection problem with non-uniform velocity field 
u, = u, = us = 1.0, u, = 1.5, u, = un =us = 1.0, u,  = 0667 and Ax = Ay = 1.0, equation (9) can be 
simplified to give 

q e  + 4 D n = V w  + CPs. (36) 

cPw=0.5cpsw+0.5cp,, (37) 

Then equations (18H21) give four surface values, respectively, as 
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and the final discretization equation is 

0 .583~,=0.6665~,w+0.1665~,-0.25~w. (41) 

The ratio of the diagonal coefficient to the summation of the absolute value of the off-diagonal 
coefficients is 0.538 for this case. 
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